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Abstract 

In the KBS-3 concept canisters containing nuclear waste are deposited along parallel tunnels 

over a large rectangular area deep below the ground surface. The temperature field in rock due 

to such a rectangular grid of heat-releasing canisters is studied. 
An analytical solution for this problem for any heat source has been presented in a preceding 

paper. The complete solution is summarized in this paper. 
The solution is by superposition divided into two main parts. There is a global temperature 

field due to the large rectangular canister area, while a local field accounts for the remaining 

heat source problem. 
In this sequel to the first report, the local solution is discussed in detail. The local solution 

consists of three parts corresponding to line heat sources along tunnels, point heat sources along 

a tunnel and a line heat source along a canister. Each part depends on two spacial variables 

only. These parts are illustrated in dimensionless form. 
Inside the repository the local temperature field is periodic in the horizontal directions 

and has a short extent in the vertical direction. This allows us to look at the solution in a 

parallelepiped around a canister. The solution in the parallelepiped is valid for all canisters that 

are not too close to the repository edges. 
The total temperature field is calculated for the KBS-3 case. The temperature field is 

calculated using a heat release that is valid for the first 10 000 years after deposition. The 

temperature field is shown in 23 figures in order to illustrate different aspects of the complex 

thermal process. 

Sammanfattning 

I KBS-3 konceptet deponeras kaplsar innehallande radioaktivt avfall langs parallella tunnlar over 

ett stort rektangulart omrade pa stort djup. Temperaturfaltet i berg fran ett sadant rektangulart 

fa.It av varmeavgivande kapslar studeras. 
En analytisk losning till detta problem for en godtycklig varmekalla har presenterats i en 

foregaende rapport. Den kompletta losningen sammanfattas i denna rapport. 

Losningen uppdelas genom superposition i tva huvuddelar. En global del avser varmeav

givning over en rektangular area, medan ett lokalt fa.It tar hand om losningen for det resterande 

varmekallsproblemet. 
I denna fortsattning studeras den lokala losningen i detalj. Den lokala losningen bestar av 

tre delar. Dessa delar svarar mot linjekallor langs tunnlar, punktkallor langs en tunnel och en 

linjekalla langs en kapsel. Varje del ar en funktion av enbart tva rumsvariabler. Dessa delar 

illustreras pa dimensionslos form. 
Det lokala temperaturfaltet inom kapselomradet ar periodiskt i de horisontella riktningarna 

och har kort rackvidd i den vertikala riktningen. Detta tillater att vi tittar pa losningen i en 

parallellepiped kring en kapsel. Losningen i parallellepipeden galler for varje kapsel som inte ar 

for nara forvarets kanter. 
Det totala temperaturfaltet beraknas for data fran KBS-3. Temperaturfaltet beraknas for 

en varmeavgivning som galler under de forsta 10 000 aren. Temperaturfaltet visas i 23 figurer 

vilka illustrerar olika aspekter pa den komplicerade temperaturprocessen. 
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1 Introduction 

This report is a direct sequel to (Claesson J, Probert T, Jan. 1996), which should be read first. 

The problem and analyses are not repeated here. 
Figure 1 shows the tunnels of the nuclear waste repository. The heat releasing canisters 

are placed along the tunnels. There is a rectangular region with the area D · D' around each 

canister. See Figure 1, right. 
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Figure 1: Tunnels and rectangular grid of canisters according to the SKB-3 concept. The right-hand 

figure shows an internal part with tunnels and canisters in greater detail. 

The thermal problem is divided into a global and a local part. In the global part, there is 

a plane heat source q0 (t) = Q 0 (t)/(DD') (W /m2 ) over the repository rectangle. See Figure 2. 

The remaining problem is discussed in Section 3. There, the plane heat source is subtracted as 

shown in Figure 3. 
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Figure 2: Plane heat source q0 (t) (W /m2 ) over the repository rectangle causing the global temperature. 

The analytically determined total temperature field has been compared with a numerically 

determined temperature field with very good results. See (Hokmark H, 1996). 
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2 Global Solution 

The global solution of the rectangular heat source is presented and illustrated in ( Claesson J, 

Probert T, Jan. 1996). The temperature field from the rectangular heat source is obtained by 

superposition. It should be noted that the global temperature and all other temperatures in 

this study are the excess temperatures above undisturbed conditions. The global solution for 

any heat source q0 (t) is given by: 

l {<ito /~ ( 2) [ ( L - x ) ( L + x ) ] 
T9 z(x, y, z, t) = 4,\ V----:;- 'Jo qo t - tos · erf s,v'4ato + erf s./4alo · 

. [erf ( B - Y) + erf ( B + Y )] . [e-z2/(s24ato) - e-(z-2H)2/(s24ato)] ds (l) 
s./4alo sJ4alo 

The heat source may consist of a sum of exponentials: 

Q; 
q; = DD' 

Then the global temperature is given by a sum of integrals. We have: 

T91(x, y, z, t) = LT91,i(x, y, z, t) 

The integrals T91,i are given by: 

q; ~t; 1..,/tlt; . 2 [ ( L - x ) ( L + x )] T9z,;(x, y, z, t) = , · - e-t/t,+s erf y'4a4 + erf y'4a4 · 
4" 1r o s 4at; s 4at; 

These integrals must be evaluated numerically. 

3 Local Solution 

(2) 

(3) 

In the local solution the canisters are represented by point, line and plane heat sources (See 

Figure 3). The total heat release of a canister is Q 0 (t) (W). The canisters lie along the tunnels. 

The spacing between the canisters is D. In all tunnels in the repository except the central one, 

the canister heat sources are represented by line heat sources of strength qz(t): 

qz(t) = Qo(t) (W /m) 
D 

(5) 

The spacing between the tunnels is D'. The central tunnel along the y-axis is represented by a 

line of heat sources. All the canisters along this line except the central one are represented by 

point heat sources of strength Q0(t). The central canister is approximated by a finite line heat 

source of length He and strength qc(t): 

(6) 
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All the heat sources are balanced by the plane heat source of strength -q0 (t): 

Qo(t) 2 
qo(t) = DD' (W /m ) (7) 

z 

X 

Figure 3: The heat sources of the local temperature field. 

The local solution Tzoc can be divided into three distinct parts corresponding to line heat 

sources along tunnels (index l.s.), point heat sources along a tunnel (index p.s.) and line heat 

source along the considered interior canister (index l .c.). We have: 

T1oc = Tz.s. + Tp.s. + Tz.c. (8) 

All these heat sources are balanced. The first part Tz.s. is the contribution from the line heat 

sources along the tunnels q1 balanced by a plane heat sink -q0 (See Figure 4). 

z 

--------/'-------'----- y 

X 

Figure 4: The line heat sources of strength q1 balanced by a plane heat sink of strength -q0 . 

The second part is the contribution from a line of point heat sources of strength Qo along 

the central tunnel (y-axis) balanced by a line heat sink of strength -qz (See Figure 5). The 

third and last part is the contribution from a finite line heat source of strength qc balanced by 
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a point heat sink of strength -Q0 (See Figure 6). Adding heat sources in Figures 4-6 give the 

heat sources in Figure 3. The different parts of Tzoc will be presented in the following sections. 
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Figure 5: Point heat sources of strength Q0 balanced by a line ,heat sink of strength -q1 along the 
central tunnel. 
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Figure 6: A finite line heat source of strength qc along the central canister balanced by a point heat 

sink of strength -Qo. 

The local solution is valid for all interior canisters. In the case above the central canister was 

chosen as a representative of an interior canister. In other words, the local solution is applicable 

to any other canister that is not too close to the edges of the repository. 

The local solution will be a quasi steady-state one, where the constant Q0 in the steady-state 

solution will be replaced by the slowly varying Q0(t). See Section 9. 

3.1 Line heat sources along tunnels 

The temperature field caused by an infinite number of line heat sources balanced by a plane heat 

sink is given below. The line heat sources are spaced along the x-axis at D' intervals and they 

are parallel to the y-axis ( See Figure 4). The strength of the line heat sources is qz ( t) = Q o ( t) / D 

(W/m). We have: 

Tz.s.(x, z) = /:;D Tf.s_(x/ D', z/ D') (9) 
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The dimensionless temperature Tf.s. is a function of dimensionless variables x / D' and z / D'. We 

have: 

(10) 

The level curves of the dimensionless temperature Tz\. are shown in Figure 7 for -0.5 :s; x' :s; 0.5 

and -1 :s; z' :s; l. The temperature is infinite at the line source at x' = 0 and z' = 0. The 

temperature tends to zero for large z'. The plane sink -q0 along z' = 0 is seen as an edge in 

the level curves. 

1 ,-----.-----r---,------, 

0-8 -0.01 
0 

-N 0 

-0.2 

-0.4 

-0.6 

-0.8 

-1 
-0.5 0 0.5 

x' 

Figure 7: Level curves of the dimensionless temperature Tf., .. 

3.2 Point heat sources along a tunnel 

The temperature field caused by an infinite number of point heat sources Qo (W) along a line 

and a balancing line heat sink -qz (W /m) is given below. The point heat sources are spaced 

along the y-axis at D intervals (See Figure 5). We have: 

Tp.s.(x, y, z) = 2;;Dr;.s.(Y/ D, J x2 + z2 / D) (11) 

5 



The dimensionless temperature r;.s. is a function of dimensionless variables y / D and ✓ x 2 + z 2 /D. 
We have: 

00 

r;.s_(y',p') = 2 L [cos (21rny') Ko (21rnp')] p' = Jx 2 + z2 /D (12) 
n=l 

The level curves of the dimensionless temperature r;.s. are shown in Figure 8 for -0.5 :s; y' :s; 0.5 

and 0 < p' :s; 0.5. The temperature is infinite (positive) at the point source at y' = 0 and p' = 0. 

The temperature tends to minus infinity at the y'-axis (y' =/- 0) due to the line heat sink -qz. 
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Figure 8: The level curves of the dimensionless temperature r; .... 

3.3 Line heat source along a canister 

The temperature field of a finite line heat source along a canister balanced by a point heat sink, 

Figure 6, is given by: 

(13) 

6 



The dimensionless temperature Tf.e. is a function of dimensionless variables J(2x / He) 2 + (2yj He) 2 

and 2z/ He. We have: 

T' "z' - ln (J(p")2 + (1 + z')2 + 1 + z') - 2 
I.e. (p ' ) - J(p")2 + ( 1 - z')2 - 1 + z' J(p")2 + ( z')2 

(14) 

The last term represents the balancing point heat sink. 
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Figure 9: The level curves of the dimensionless temperature Tfcan. 

The temperature field T1ean from the line heat source along the canister, -He/2 ::; z ::; He/2, 

with strength Qo(t)/ He (W /m) is given by the first term of Tf.e. in Eq. (14). We have: 

T ( ) Qo T' ( " ') lean x,y,z = 41r>..He · lean P ,z (15) 

The dimensionless temperature is given by: 

' "z' -ln(J(p")2+(1+z')2+1+z') 
T1can(P , ) - J(p")2 + (1 _ z')2 _ 1 + z' 

(16) 
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The level curves of the dimensionless temperature Tfcan are shown in Figure 9 for -2.5 :S z' :'.S 2.5 
and O < p" :; 2.5. The temperature is infinite (positive) at the finite line heat source p" = 0, 

-1:Sz:Sl. 

3.4 Total local solution 

The local temperature field induced by the heat sources in Figure 3 is given by: 

T1 0 c(x,y,z;t) = ~0;2 · T/s. (x/D',z/D') + ~0;2 · r;.s. (y/D, ✓x2 + z2 /D) 

+ 4~~~c • Tf.c. (2jx 2 + y2/Hc,2z/Hc) 

4 Input data 

(17) 

The input data can be divided into three parts concerning the geometry of the heat-source, 

properties of the heat source and thermal properties of the rock. The following data are used in 
the reference case: 

L = 500 m B = 500 m H = 500 m D = 6 m D' = 25 m 

He= 5 Re= 0.4 m 

ql = 5 W /m2 q2 = 5/3 W /m2 t1 = 46 y t2 = 780 y 

C =pc= 2700 · 800 J/(m3K) >. = 3.5 W /(m · K) (18) 

The heat release from each canister is given by two exponentials: 

(W) Qo(O) = 1000 W (19) 

The heat release per unit area of the heat source is: 

qi = Q;j(DD') i = 1, 2 (20) 

The total initial effect emitted from a canister is Q0 (0) =1000 W. This effect is divided between 

the two decay components at a ratio 3:1 (750 W /250 W). The initial amplitude of the heat 

emission rate with the decay time t1 = 46 years is Q 1 =750 W (3/4 of 1000 W) for each 

canister. The area around a canister is D D' = 6 · 25 m 2 • The effect per unit area q1 is then 

750/150 = 5 W/m2 • The second effect Q 2 with the longer decay time t2 =780 years has initially 
one fourth of the total initial effect Q0 (0) or a third of Q 1 . In this case Q 2 = 250 W. 

The expression (19) for the heat release is valid for the first 1000 years. The effect release is 

erroneous for times longer than 1000 years. The error increases with time. An expression that 

is valid for longer times has been derived in (Hokmark H, 1996). This expression for the heat 

release will be used in Section 8 where the global temperature field for times longer than 1000 

years is discussed. 
All results presented in this study concern the above reference case. 

5 Numerical model 

The solution for the total (global and local) temperature field has been implemented on PC for 

rapid computer solution. This is described in greater detail in Appendix 1. Briefly, the model 

is implemented in MATLAB version 4.2c.l and run on a Intel Pentium 90 MHz PC. 
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The calculation of the total temperature at a point takes roughly 3 seconds. This execution 

time depends strongly on the number of modified bessel functions used in the sum of Eq. (12). 

The time integral in the global solution is evaluated numerically. 
All the figures showing temperature fields have been generated by MATLAB. The resolution 

and execution times for temperature fields illustrated in the figures are given in Appendix l. 

6 The total solution 

The total solution is given by the sum of the global solution, the local solution and the undis

turbed temperature T0 ( z ). We have: 

Ttot(x, Y, z, t) = T9 1(x, y, z,t) + Ttoc(x, y, z, t) + To(z) (21) 

The undisturbed temperature of the ground T0 (z) is given in (Israelsson J, 1995). The tempera

ture at the ground surface is set to 7°C and the constant downward gradient is set to 0.016°C/m, 

which corresponds to a temperature of 15°C at the repository level (H =500 m). Near the repos

itory plane the undisturbed temperature T0 (z) can be approximated by Trep,O = 15°C. We have: 

Ttot(x,y,z,t) = T91(x,y,z,t) + T1 0 c(x,y,z,t) + Trep,O (22) 

The global solution is approximately constant in the repository plane. In this case we get the 

total solution by adding a constant temperature to Ttoc· The global temperature is 33.9° C for 

t = 50 years and 34.3° C for t = 500 years. In the vertical cross-section through the repository, 

planes y = 0 and x = 0, the temperature changes by a few degrees in the z-direction from the 

centre of the plane z = 0 to z = ±2Hc- In the case t = 50 and 500 years the temperature 

difference is 4.6 °C and 1.3 °C, respectively (KBS-3 data). 

7 Total temperature field 

The local solution is periodic in the x- and y-directions except near the edges of the repository 

( with the period D' and D, respectively). The global solution is constant in planes parallel and 

close to the repository plane. Furthermore, the total local temperature field is small for z 2'.: 2Hc 

(In the KBS-3 case T1 0 c(0, 0, 2Hc, 50) = 0.3°C). This means that we only need to look at the 

total solution in a parallelepiped surrounding the central canister to get the essential behaviour 

of the temperature field. See Figure 10. The parallelepiped surrounding the central canister is 

defined by: 

{ 
-D'/2 ~ x ~ D'/2 
-D/2 ~ y ~ D/2 
-2Hc ~ Z ~ 2Hc 

(23) 

The temperature field of the total solution is studied for t = 50 years. The largest canister 

temperature occurs after 43 years, and the largest global temperature occurs after 82 years 

( according to ( Claesson J, Probert T, Jan. 1996) ). The total solution will be shown in six cross

sections of the parallelepiped ( two horizontal and four vertical). Three of the cross-sections, 

x = 0, y = 0 and z = 0, intersect at the centre of the parallelepiped (Also the centre of the 

central canister). The remaining horizontal cross-section cuts the parallelepiped at z = He- The 

last two cross-sections are two of the vertical faces of the parallelepiped, x = D' /2 and y = D /2. 

The solution in the parallelepiped is symmetrical in the x-, y- and z-directions with respect to 

the centre (0, 0, 0) which reduces the number of calculations by 75%. 
In all the temperature fields the 57°C level curve is shown. This temperature is the canister 

temperature after 50 years as determined in (Claesson J, Probert T, Jan. 1996). 
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Figure 10: The parallelepiped surrounding the central canister. The total local solution is illustrated 

in planes that are vertical and horizontal cross-sections of this volume. 

In Figure 11 the total temperature field is shown in the horizontal plane z = 0 through the 

centre of the parallelepiped. The circular 57-degree isotherm corresponds roughly to the radius 

(0.4 m) of the canister. The 48-degree isotherm is nearly straight. 
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Figure 11: The total temperature field Ttot in the plane: -D'/2 :S: x :S: D'/2, -D/2 :S: y :S: D/2, z = 0 

(t = 50 years). 
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In Figure 12 the total temperature field is shown in the vertical plane y = 0 through the centre 

of the parallelepiped. The elliptical 57-degree isotherm corresponds roughly to the cylindrical 

shape of the canister (length= 5 m, radius= 0.4 m). 
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Figure 12: The total temperature field Ttot in the plane: -D' /2 ~ x ~ D' /2, y = 0, -2Hc ~ z ~ 2Hc 

(t = 50 years). 
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In Figure 13 the total temperature field is shown in the vertical plane x = 0 through the centre 

of the parallelepiped. The elliptical 57-degree isotherm corresponds roughly to the cylindrical 

shape of the canister (length= 5 m, radius= 0.4 m). isotherm does not. The 46-degree isotherm 

is nearly straight. 
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Figure 13: The total temperature field Ttot in the plane: x = 0, -D/2 :S y :S D/2, -2Hc :S z :S 2Hc 

(t = 50 years). 
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In Figure 14 the total temperature field is shown in the vertical plane y = D /2, which is a face 

of the parallelepiped. This plane is 3 metres from the centre of the canister. 
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Figure 14: The total temperature field Ttot in the plane: -D' /2 ~ x ~ D' /2, y = D/2, -2Hc ~ z ~ 2Hc 

(t = 50 years). 
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In Figure 15 the total temperature field is shown in the vertical plane x = D' /2, which is a face 
of the parallelepiped. This plane is 12.5 metres from the centre of the canister. The 45- and 
46-degree isotherms are straight. 
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Figure 15: The total temperature field I'tot in the plane: x = D' /2, -D/2 ~ y ~ D/2, -2Hc ~ z ~ 2Hc 
(t = 50 years). 
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In Figure 16 the total temperature field is shown in the horizontal plane z = He- This horizontal 

cross-section is 2.5 metres above the canister. The 48-degree isotherm is elliptical in shape. The 

47-degree isotherm is nearly straight. 

Ttot (deg C) 
I I I I 

2 - -

- 0 -
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-
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Figure 16: The total temperature field Ttot in the plane: - D' /2 ~ x ~ D' /2, - D /2 ~ y ~ D /2, z = He 

(t = 50 years). 

8 Global temperature field for times longer than 1000 years 

The expression (19) in Section 4 for the heat release is valid for the first 1000 years. After 1000 

years the effect release is under estimated. Accuracy is increased by using three exponentials 

instead of two in the expression for the heat release. The new expression for the heat release, 

which is valid for 10 000 years, is obtained by least square approximation to fit the effect curve 

in (SKB 91, 1992) to three exponentials with the decay times: 

t3 = 5000 (years) (24) 

The heat release from each canister is then given by three exponentials: 

(W) Qo(O) = 1000 W (25) 

The total initial effect emitted from a canister is Q0 (0) =1000 W. This effect is divided between 

the three decay components so that: 

(W) (26) 

The expression for the heat release (25) is derived in (Hokmark H, 1996). 

In Figure 17 the temporal development of the temperature field is shown at the centre of 

the repository for O :St :S 10000 years (left), and for O :St :S 500 years (right). It should be 

noted that the temperature is the excess temperature above the undisturbed temperature. The 

temperature increases rapidly during the first ten years because of the heat release. Then the 

temperature increase gradually becomes smaller until a maximum is reached, and the temper

ature starts to decrease because of the exponential nature of the heat source. The maximum 

temperature of approximately 35°C occurs after 80 odd years. There is no minimum or second 

maximum, just a slightly slanted stretch from 200 to 500 years. The exponential with the longest 

decay time takes over after roughly 2000 years. Compare Figure 17 with Figure 5 of (Probert 

T, Claesson J, Apr. 1996). 
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Figure 17: The temperature at the centre of the repository for 0 :St :S 10 000 (left) and for 0 :St :S 1500 

(right). 

The temperature field along the z-axis is shown in Figure 18 for three times, t = 1000, 

5000 and 10 000 years. The maximum temperature along the z-axis is reached at the repository 

centre z = 0. The maximum temperature is 28, 12 and 5°C after 1000, 5000 and 10 000 years, 

respectively. 
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Figure 18: The temperature along the z-axis, from the ground surface at z = 500 to z = -500 via the 

centre, for three times t =1000, 5000 and 10 000 years. 

The temperature along the x-axis is shown in Figure 19 for three times, t = 1000, 5000 

and 10 000 years. The maximum temperature along the x-axis is reached at the repository 

centre x = 0. The maximum temperature is 28, 12 and 5°C after 1000, 5000 and 10 000 years, 
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Figure 19: The temperature along the x-axis, from the centre to x = 1000, for three times t =1000, 
5000 and 10 000 years. 

400 

300 

200 

100 

E 0 ----N 11 
-100 10 

9 
-200 8 

-300 7 

-400 
6 

5 

0 200 400 600 800 1000 
X (m) 

Figure 20: The temperature field in the vertical plane y = 0 for t = 5000 years. 
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The temperature field in the vertical plane y = 0 is shown in Figures 20 and 21 for t =5000 

and 10 000 years, respectively. The level curves of the temperature field are shown for the integer 

values from 1 to 12°C in Figure 20, and for the integer values from 1 to 5°C in Figure 21. The 

level curves in both figures encircle the repository at 0 ~ x ~ 500, z = 0. The excess temperature 

100 metres below the ground surface is 2°C and 1 °C after 5000 and 10 000 years, respectively. 

The isotherms are more dispersed for t = 10 000 years. 
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Figure 21: The temperature field in the vertical plane y = 0 fort =10 000 years. 

The temperature ·field in the horizontal plane z = 0 is shown in Figures 22 and 23 for 

t =5000 and 10 000 years, respectively. The level curves of the temperature field are shown for 

the integer values from 1 to 12°C in Figure 22, and for the integer values from 1 to 5°C in 

Figure 23. The level curves encircle the repository at 0 ~ x, y ~ 500. The isotherms are more 

dispersed for t = 10 000 years. 
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Figure 22: The temperature field in the horizontal plane z = 0 for t = 5000 years. 
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Figure 23: The temperature field in the horizontal plane z = 0 for t =10 000 years. 
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If the global temperature field is to be studied for times longer than 10 000 years then a 

new expression for the heat release must be derived. This expression will consist of four or more 

exponentials with even longer decay times. 

9 Quasi steady-state local solution 

The variation of Qo( t) with time is quite slow in the KBS-3 case, since the lowest time scale is 

t1 = 46 years. The time-scale to attain steady-state conditions for constant Q0 = q0 · D D' in the 

balanced case turns out to be a few years only. This has been verified by numerical calculations 

performed by Thomas Blomberg, Dept. of Building Physics, Lund Institute of Technology. The 

solution will be a quasi steady-state one, where the constant Q0 in the steady-state solution will 

be replaced by the slowly varying Q0(t). 
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Appendix 1. Manual for the computer code 

Introduction 

This short manual describes how to use the computer model that calculates the temperature 

fields derived in Claesson, Probert (Jan. 1996) and applied in this paper. The numerical model 

is implemented in MATLAB version 4.2c.l in the Windows 3.11 milieu run on DOS 6.22. The 

numerical solution has the same structure as Eqs (3), ( 4), (17) and (21). 

Them-files 

Nine m-files are used. These m-files are: 

• ttot.m (Ttot) 

• tgl.m (T9z) 

• tgli.m (T91,i) 

• tloc.m (T1oe) 

• tls.m (Tz.s.) 

• tps.m (Tp.s.) 

• tlc.m (Tz.e.) 

• qOto.m (Qo(t)) 

• constst.m 

The first seven are function files and the last is a script file. The corresponding temperature 

calculated or value initiated by the function m-files is shown in brackets after the m-file name. 

The function ttot calls the functions tgl and tloc. The function tgl calls the function tgli, and 

the function tloc calls the functions tls, tps and tic. All function files, directly or indirectly, 

call constst. The function m-file qOto is only called by the functions tls, tps and tic. 

The input is initiated by the script m-file constst. The input data consists of five parts: 

• Geometry of the repository with tunnel spacings and canister dimensions ( L, B, H, D, 

D', He, Re) 

• Mechanical properties of the rock mass (p) 

• Thermal properties of the rock mass ( c, >., a) 

• Heat source data (Q0 (0), q;(0), t;) 

• Undisturbed temperature (Trep,o) 

Any item of input data may be altered. If the number of exponentials is changed then the 

number of decay times t; and initial heat releases q; must be changed accordingly in them-files 

tgl and constst, and in the global variable declarations. 

The calculation of the local temperature at a point takes roughly 1-3 seconds. This execution 

time depends strongly on the number of modified bessel functions used in the sum of Eq. (12). 

The number of terms depends on the rate of convergence and the accuracy that is needed. The 

rate of convergence varies from point to point. If 50 terms are used the execution time is less 

than 1 second. If, however, 400 terms are used the execution time is over 3 seconds. 
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The global temperature takes slightly less than 1 second to calculate. This time depends 

on the size of the arguments in the Error function calls and the number of Error function 

calls. An Error function call takes between 5 and 8 milliseconds. The number of Error function 

calls needed depends on the integration procedure. The time integral in the global solution is 

evaluated numerically using the Trapezoidal rule with n = 300. This value of n gives the integral 

value with an error less than 1 % of the integral value for n = 10 000. If n = 300 the execution 

time is roughly half a second. If n = 1000 the execution time is roughly a second. 

All the figures showing temperature fields have been generated by MATLAB. The resolution 

and execution times for the illustrated temperature fields in the figures are the following. The 

figures in Section 3 have a resolution of 100x200 points with the exception of Figure 7 which has 

200x200 points. Figures 7 and 9 were drawn directly and Figure 8 took 8 hours. The Figures 

in Section 7 have a resolution of 200x200 points and they took 8 hours each. Note that only 

100 X 100 points were used in all the calculations because of symmetry. 
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